

Utilising DSV Dive System for Air-TUP Diving - Operational Experiences

D. Scott, Diving Lead - Projects

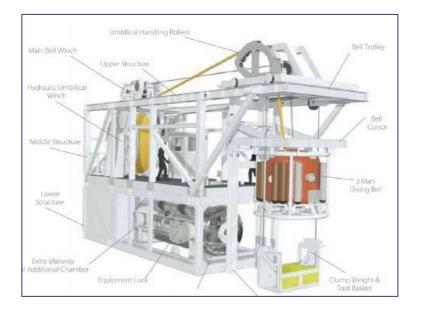
Nov 2021

This document and all information herein are confidential, and may not be used, reproduced or distributed without prior authorization of TechnipFMC.

Agenda / Scope

- Air-TUP Background
 - o Seminar 2019
 - TFMC Assets
 - Technique Comparison
- Aim / Meaning
 - \circ Key Features
- Operational Challenges
 - Efficiency
 - Development Cycle
 - \circ Evacuation
 - Tending

Project Execution


ullet

Air-TUP - Looking back at 2019 Conference

- > Resurgence in the technique and one of the main 'hot topics' with multiple presentations
- Focus on Air-TUP as being a mobile system
- ➢ Focus on Air-TUP as an alternative to Saturation in the <50 msw range</p>

DSV Fleet Overview

Deep Arctic

- DP3 (Battery Hybrid)
- 400Te + 58Te Crane
- 157m LBP
- 1700m3 Deck Space
- Sat System
 - 18 Man
 - 350msw
 - NORSOK
 - Twin Bell
- 2 UHD III ROVs + Lynx ObsROV

TechnipFMC

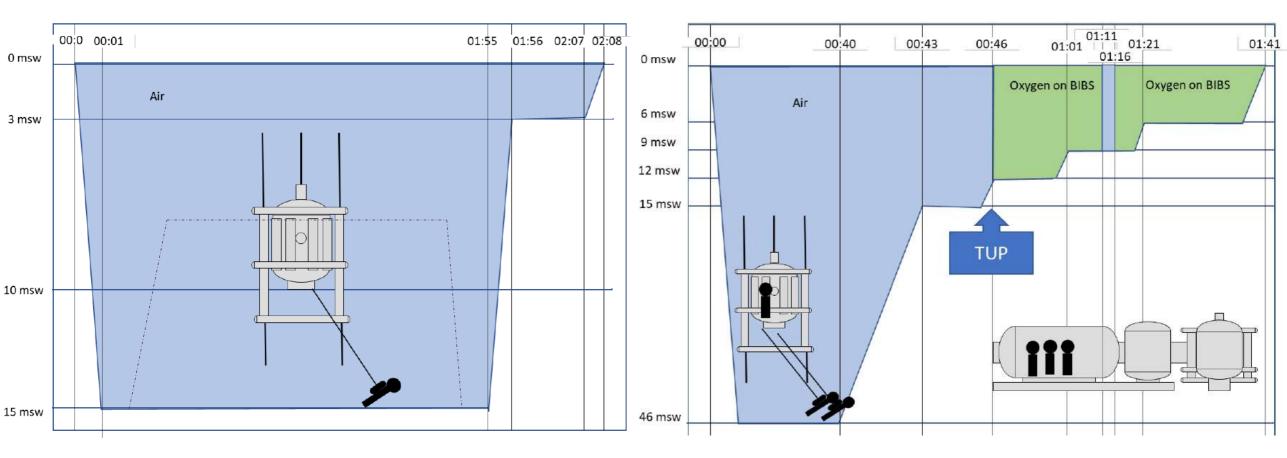
Deep Discoverer

- DP3
- 250Te Crane
- 121m LBP
- 1050m3 Deck Space
- Sat System
 - 18 Man
 - 300msw
 - Twin Bell
- Nitrox, Basket Surface System
- L-WROV

Deep Explorer

- DP3
- 400Te + 58Te Crane
- 157m LBP
- 1700m3 Deck Space
- Sat System
 - 24 Man
 - 350msw
 - NORSOK
 - Twin Bell
- 2 XLX WROV+ Lynx ObsROV

Shallow Techniques - High Level Relative Comparison


* All very subjective & depth/project dependent etc. + Many more factors to consider	Shallow Saturation Diving	No-Stop Nitrox Diving				
		Built In Basket	Mobile Basket	Mobile Wet Bell	LDC	Air-TUP Diving
Mobilisation Time	\bigcirc		$\bigcirc \bigcirc $		$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	
Mobilisation Lead Time	\bigcirc					
Extra Equipment Costs	-	3	6666	\$ \$ \$ \$ \$	3333	3
PM&E						
Deck Space	-	-				-
Crewing Levels		. \$ \$ \$ \$. \$\$\$\$.	
Productivity	(\$\$\$	¢¢¢	666	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	¢¢
Weather Limits					œ	
Vertical Excursions	(NORSOK14m min depth)	\longleftrightarrow	\longleftrightarrow	← →	\longleftrightarrow	← →
Operational Complexity	(i) (i) (i) (i) (i)	${\scriptstyle \textcircled{0}}$	()	(©)		
Decompression Time		0	0	0	0	X

TFMC Shallow Air-TUP - Diving Definition / Limits

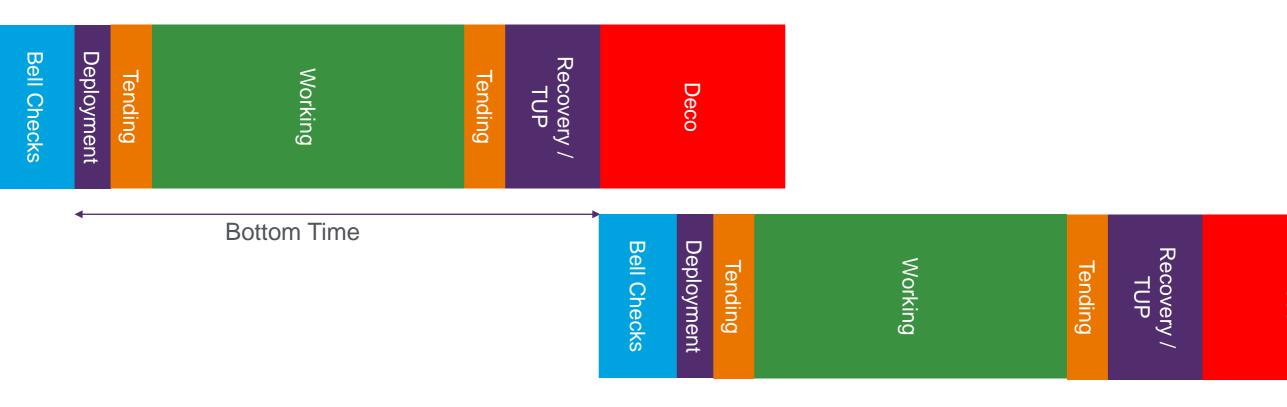
- > Divers utilise a vessel's existing Saturation System but with air instead of Heliox as breathing medium.
- > Nitrox not feasible (O_2 clean/design components + explosion risk)
- Limited to 50msw (but practically and economically <24msw)</p>
- > Divers deployed in bell to circa 11-15m (to clear the cursor/hull/moonpool effects) or their working depth
- > If required, divers excursion to the working depth and complete their workscope
- > Divers retreat to the bell and are recovered to surface, under pressure
- > Divers then either decompress in the bell or transfer back to the system and decompress to surface
 - Divers not kept in saturation Any transfer >12msw.
 - $\circ~$ Bell decompression only practical at the shallow end scale and where space etc allows.
- > Air-TUP (O2 cycle) or standard decompression (only standard deco in bell) tables all based on MT92

Air-TUP Diving Profiles

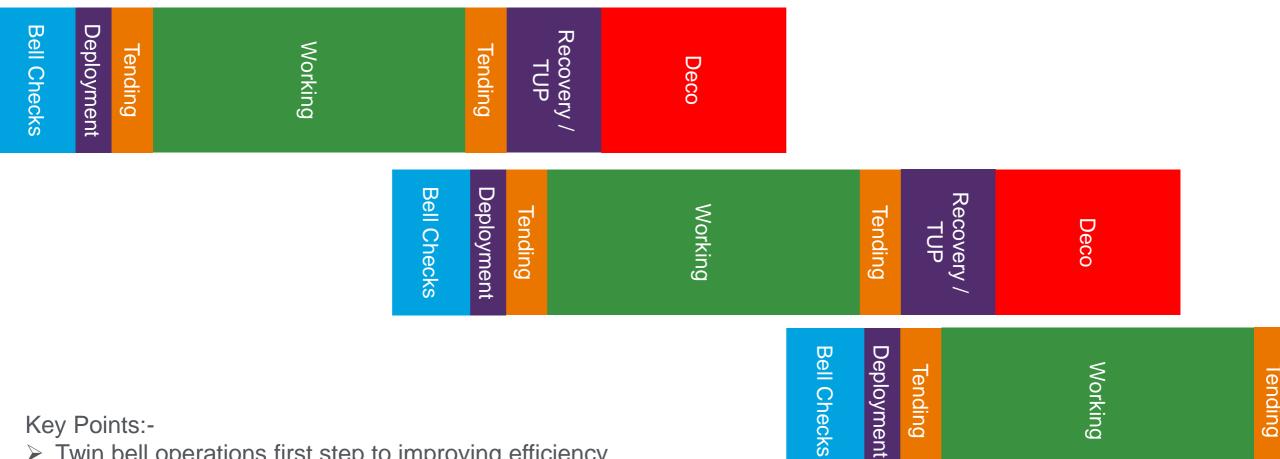
Shallow Air-TUP - Diving Meaning / Limits

- > TechnipFMC does allow mixed saturation / Air-TUP use of system in correct circumstances
 - o Gas Management / Segregation
- > Excursion window larger than saturation But not unlimited
- > Bottom time increase as per L103 ACOP TUP (Note improvement on non-TUP times)

> Key Aspects:-


- Economical way of shallow diving on vessel with existing saturation system / no surface spread
- Removal of mobilisation / demobilisation risks associated with mobile spreads
- $\circ~$ Removal of mobilisation / demobilisation time associated with mobile spreads
- Better Deck Space utilisation
- Better weather criteria than over-side systems (but longer to site)
- Decompression added into dive
- Closed Bell Qualifications & Life Support Team Required

Practical Considerations

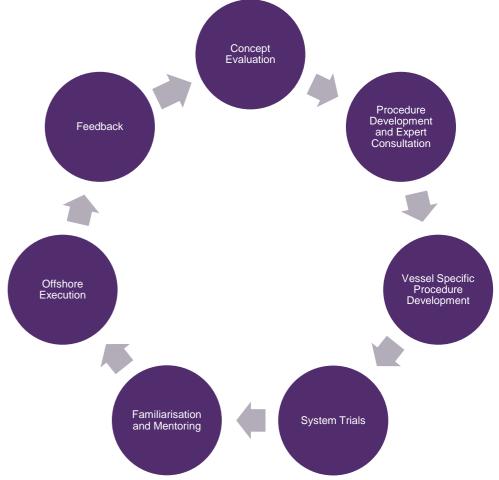


Efficiency Comparison Twin/Single Bell - Transfer into System

Efficiency Comparison Twin/Single Bell- Transfer into system

Bell Checks

Deployment

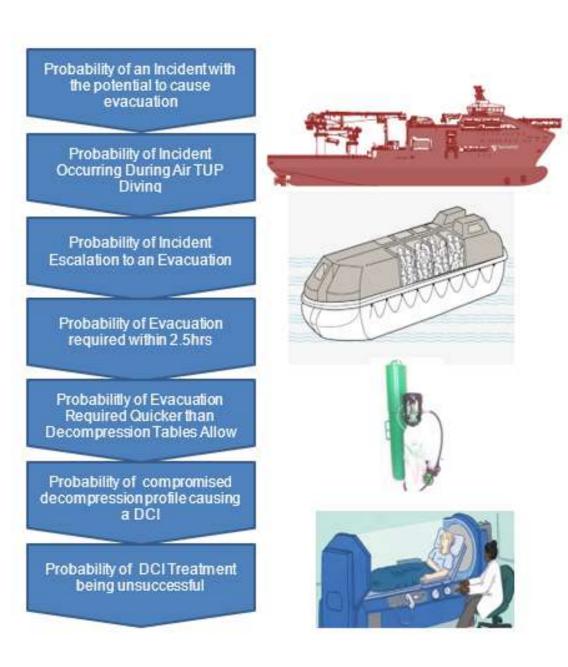

Key Points:-

TechnipFMC

- Twin bell operations first step to improving efficiency
 - Approx. 50% improvement Ο
 - More divers needed to achieve
 - Intensive workload on Supervisors / Technicians Ο

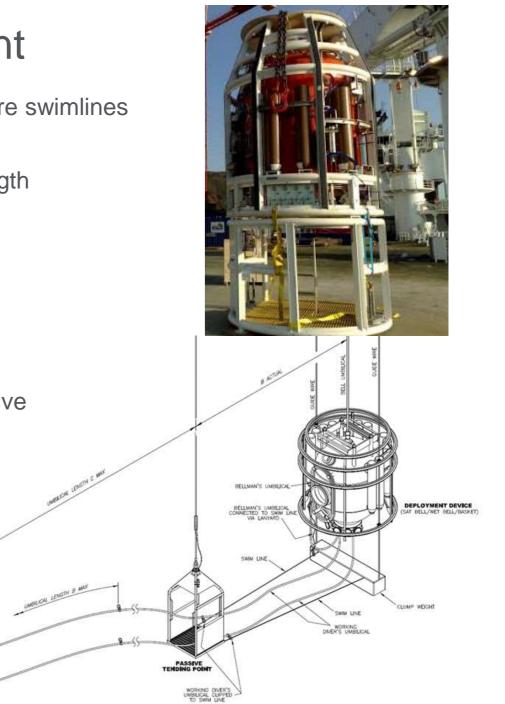
Development Cycle and Challenges

- Understand the background to tables / limits / decompression gradients
- > Each dive system / gas distribution system unique. One size fits all not possible.
- > Validate the expected performance of the systems Testing/drills leading to mentors
- > Safety
 - Deco introduction- controlled environment
 - o No mob activities
 - \circ Longer swims
 - o Bell/moonpool Deployment
 - o Bellman
- Challenges Perception of technique
 - What's in a name?
 - What's done/aimed for elsewhere

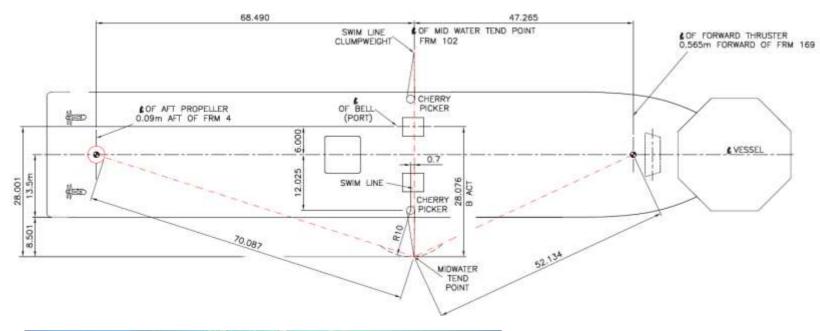


Evacuation Considerations

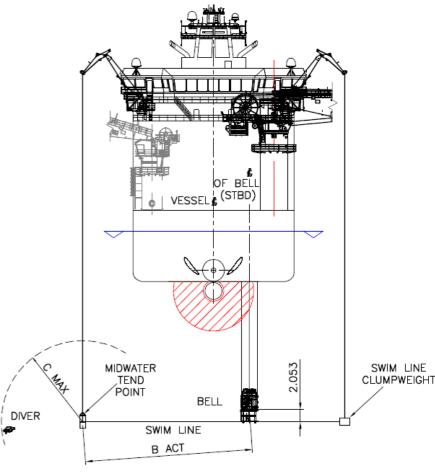
- Methods available
 - No Stop Evacuate as per rest of crew
 - Prescribed Rates
 - Fast Deco, O2 set & remote treatment
 - o SPHL
- ➢ How likely is an evacuation?
 - o What is likely timeframe
 - How does timeframe affect method
- What is the Risk?


TechnipFMC

- How does it compare to other Diving Methods
- o Industry standards
- How does combining Air-TUP & saturation in one system affect each other's evacuation?



Standard Passive Tending Arrangement


- > Bell Clump Weight connects to the Golden Gate 'tend point' via wire swimlines
- Particularly with offside bells, these swims can be a significant length
 Excursion window
 - \circ Fatigue
 - \circ Entanglement
- > On integrated clump weight bell designs
 - $_{\odot}$ This set-up requires to be re-established / de-established each dive

The 'Flying Swimline' concept

The 'Flying Swimline' concept

- > Permanent swimline left connected between Tending Basket & CW suspended on Port and Starboard Pickers
- Line routes directly underneath both bells
 - The connection point has to be low profile to allow the large locking carabiners to pass over easily when divers are deployed from the far bell.
- > Bell lowers into position above swimline / connects using positive locking hook
 - Any attachment rigging can't create snag points
- Swimline can be established by WROV or other divers at any depth
 - Weight limitations (non-buoyant/not heavy)
 - o Grip/Wear factors to consider

The 'Flying Swimline' concept

Key Advantages:

- > Reduced diver fatigue for swimline set-up. Less mistakes/more achieved
- Set-up done in 'dead' time
- > Additional safety measure as divers can go directly to the golden gate using the swimline for support
- > Removes the need for mid-water swims holding the swimline and controlling umbilical.
- > Flying swimline arrangement allows for easier/quicker diver deployment & bell recovery in case of emergency.
- Grip Better, separation maintained better
- Marginal Gains = big overall effect

Project Execution

West of Shetland Campaign

≻Work scopes circa 15.5 msw

 $_{\odot}$ Anticipated Vertical Excursions - Excludes saturation

 \circ Over-side surface systems – Feasible

 \circ Harsh environment

 $_{\odot}$ AirTUP considered

≻Two Campaigns

TechnipFMC

April - Deep Arctic: Inspection Activities

 $_{\odot}$ Summer - Deep Discoverer: Caisson / Clamp Installation

Campaign 1 - Deep Arctic

≻Large Bell with Offset Door - Bell Decompression Method Chosen

 \circ Key issue encountered - Depths more than expected = step change in table times

 $_{\odot}$ Other SIMOPS influences

 $_{\odot}$ Good Seastates – More than 2m Hs for majority of campaign

≻11 Day Vessel Availability Window

Mobilisation / demobilisation durations / Weather / Transits / SIMOPS = Small window to achieve work
 Air-TUP generated estimated 3 - 5 extra days of operations (weather + mobilisation time)

Campaign 2 - Deep Discoverer

Smaller Bell and simpler system – Chamber Deco Method Chosen

≻Higher percentage of work shallower than 15.5 m Elevation level

Vessel Overside Nitrox Basket System

 Used almost exclusively as found to be more efficient
 Passive Tending not always required
 Good bottom times at the shallower depths
 Vessel Lee – better than expected weather sheltering
 Less Impact for breakaways (SIMOPS)

Summary

>In many ways, campaigns summarised what was expected

- $_{\odot}$ Air-TUP very useful on a vessel without a dedicated spread
- $_{\odot}$ Air-TUP can improve weather criteria
- $_{\odot}$ Air-TUP very useful tool in the very shallow saturation / surface range options
 - $_{\odot}$ Particularly where larger excursions expected
- $_{\odot}$ Over Side Systems generally more efficient but accrue mobilisation time etc if not 'built in'

Air-TUP can be a project enabler and has its place
 But needs to be used in the correct situations.
 One of many tools - not the only one.

